MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase A pathway.

نویسندگان

  • Minfeng Shu
  • Yuehan Zhou
  • Wenbo Zhu
  • Haipeng Zhang
  • Sihan Wu
  • Jingkao Chen
  • Guangmei Yan
چکیده

Glioma is the most common malignant cancer affecting the central nerve system, with dismal prognosis. Differentiation-inducing therapy is a novel strategy that has been preliminarily proved effective against malignant glioma. We have reported previously that activation of cAMP/protein kinase A (PKA) pathway is capable of inducing glioma cell differentiation, characterized by astrocyte-like shape and dramatic induction of astrocyte biomarker glial fibrillary acidic protein (GFAP). However, little progress has been made on molecular mechanisms related. Here we demonstrate that microRNA 335 (miR-335) is responsible for the glioma cell differentiation stimulated by activation of cAMP/PKA pathway. In the cAMP elevator cholera toxin-induced differentiation model of rat C6 glioma cells, miR-335 was significantly up-regulated, which was mimicked by other typical cAMP/PKA pathway activators (e.g., forskolin, dibutyryl-cAMP) and abolished by PKA-specific inhibitor (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i] [1,6]benzodiazocine-10-carboxylic acid, hexyl ester (KT5720). In an assay measuring gain and loss of miR-335 function, exogenetic miR-335 resulted in induction of GFAP, whereas miR-335 specific inhibitor antagomir-335 violently blocked cholera toxin-induced GFAP up-regulation. It is noteworthy that in human U87-MG glioma cells and human primary culture glioma cells, miR-335 also mediated cholera toxin-induced differentiation. Taken together, our findings suggest that miR-335 is potently required for differentiation of malignant glioma cells induced by cAMP/PKA pathway activation, and a single microRNA may act as an important fate determinant to control the differentiation status of malignant gliomas, which has provided a new insight into differentiation-inducing therapy against malignant gliomas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACCELERATED COMMUNICATION MicroRNA 335 Is Required for Differentiation of Malignant Glioma Cells Induced by Activation of cAMP/Protein Kinase A Pathway

Glioma is the most common malignant cancer affecting the central nerve system, with dismal prognosis. Differentiationinducing therapy is a novel strategy that has been preliminarily proved effective against malignant glioma. We have reported previously that activation of cAMP/protein kinase A (PKA) pathway is capable of inducing glioma cell differentiation, characterized by astrocyte-like shape...

متن کامل

cAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells

Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...

متن کامل

Cholera toxin induces malignant glioma cell differentiation via the PKA/CREB pathway.

Malignant gliomas are one of the leading causes of cancer deaths worldwide, but chemoprevention strategies for them are few and poorly investigated. Here, we show that cholera toxin, the traditional biotoxin and well known inducer of accumulation of cellular cAMP, is capable of inducing differentiation on malignant gliomas in vitro with rat C6 and primary cultured human glioma cells. Cholera to...

متن کامل

بررسی اثر افزایش cAMP بر فسفوریلاسیون پروتئین BAD در رده‌ی سلولی لوسمی لنفوبلاستیک حاد پیش سازB- (NALM-6) تیمارشده با دوکسوروبیسین

Kashiri M1, Safa M2, Kazemi A3 1Dept. of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Center, Dept. of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran 3Dept. of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, I...

متن کامل

I-34: Steroid Hormone Signalling at the FetomaternalInterface

Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 81 3  شماره 

صفحات  -

تاریخ انتشار 2012